Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299813

ABSTRACT

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Subject(s)
Deer , Rumen , Humans , Animals , Anaerobiosis , Rumen/microbiology , Herbivory , Fungi/genetics , Ruminants
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445869

ABSTRACT

Polycyclic aromatic hydrocarbons, e.g., benzo[a]pyrene (BaP), are common dietary pollutants with potential carcinogenic activity, while polyphenols are potential chemopreventive antioxidants. Although several health benefits are attributed to polyphenol-rich pomegranate, little is known about its interaction with BaP. This study integrates histochemical, microbiomic, and metabolomic approaches to investigate the protective effects of pomegranate juice from BaP-induced pathologies. To this end, 48 Sprague-Dawley rats received, for four weeks, either pomegranate, BaP, both, or neither (n = 12 rats per group). Whereas histochemical examination of the colon indicated tissue damage marked by mucin depletion in BaP-fed animals, which was partially restored by administration of pomegranate juice, the fecal microbiome and metabolome retained their resilience, except for key changes related to pomegranate and BaP biotransformation. Meanwhile, dramatic microbiome restructuring and metabolome shift were observed as a consequence of the elapsed time (age factor). Additionally, the analysis allowed a thorough examination of fecal microbiome-metabolome associations, which delineated six microbiome clusters (marked by a differential abundance of Lactobacillaceae and Prevotellaceae, Rumincococcaceae, and Erysipelotrichaceae) and two major metabolome clusters (a sugar- and amino-acids-dominated metabotype vs. a cluster of fatty acids and hydrocarbons), with sugar alcohols maintaining a unique signature. In conclusion, using paired comparisons to minimize inter-individual animal variations allowed the dissection of temporal vs. treatment-derived variations. Microbiome-metabolome association clusters may be further exploited for metabotype prediction and gut-health biomarker discovery.


Subject(s)
Microbiota , Pomegranate , Rats , Animals , Rats, Sprague-Dawley , Metabolomics , Colon , Computational Biology , Pyrenes , Benzo(a)pyrene/toxicity
3.
Nat Commun ; 14(1): 3798, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365172

ABSTRACT

Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.


Subject(s)
Mycobiome , Animals , Mycobiome/genetics , Phylogeny , Feces/microbiology , Digestive System , Biological Evolution , Mammals
4.
Toxicon ; 222: 107003, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36535530

ABSTRACT

A comprehensive assessment of the literature on strategies for the detection and removing endotoxin from biotechnological preparations was conducted. This study highlighted the brief history of endotoxin. After that, a review of endotoxin's chemical and physical features, as well as its pathophysiological consequences when the body is exposed to LPS excessively or systemically, is presented. The procedures for determining endotoxin and the interaction of endotoxin with proteins are also discussed, considering both known approaches and cutting-edge technology in this sector. This review presented the endotoxin detection and removal approaches from antisera with an economical approach using several processes documented in the literature (e.g., adsorption, ultrafiltration, and chromatography). Different methods with relatively high protein recoveries are mentioned. This review concludes that heat activation at 70 °C-80 °C for 10 min and rehydration of the LAL reagent with endotoxin-specific buffer solution is the best technique to control the enhancement problem when testing polyvalent snake venom antiserum samples by the LAL method. The most efficient method for eliminating endotoxins has proven to be affinity resin-based chromatography.


Subject(s)
Antivenins , Endotoxins , Animals , Endotoxins/analysis , Antivenins/analysis , Proteins , Adsorption , Snakes
5.
BMC Vet Res ; 18(1): 72, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35180858

ABSTRACT

BACKGROUND: Bacterial ghosts are the evacuated bacterial cellular membranes from most of the genetic and protein contents which preserved their surface characters. Recently, bacterial ghosts exploited for different biomedical applications, for instance, vaccination. The purpose of this study is to measure the immunogenic protective response of bacterial ghosts of Salmonella Typhimurium in animals and to allow future testing this response in humans. The immunologic response was qualitatively, quantitatively, and functionally measured. We have measured the humoral and cellular immune responses, such as immunoglobulins elevation (IgG), increased granulocytes, serum antibacterial activity, clearance of virulence in feces and liver, and the survival rate. RESULTS: The bacterial ghosts' vaccine was able to protect 100% of subcutaneously vaccinated rats and 75% of adjuvant subcutaneously vaccinated rats. The lowest survival rate was in the orally vaccinated group (25%). The maximum level of serum IgG titers, as well as serum and feces bactericidal activity (100% eradication), was exhibited in the subcutaneously vaccinated group with adjuvant vaccines followed by the subcutaneously vaccinated one. Additionally, the highest granulocytes' number was observed in the adjuvant vaccine subcutaneously immunized group. The bacterial load in liver homogenate was eliminated in the subcutaneously vaccinated rats after the virulence challenge. CONCLUSIONS: The bacterial ghosts of Salmonella enterica serovar Typhimurium that prepared by Tween 80 Protocol showed an effective vaccine candidate that protected animals, eliminated the virulence in feces and liver. These findings show that chemically induced bacterial ghosts of Salmonella Typhimurium can be a promising vaccine.


Subject(s)
Rodent Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Animals , Antibodies, Bacterial , Antibody Formation , Bacterial Vaccines , Rats , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium , Vaccines, Attenuated
6.
G3 (Bethesda) ; 11(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34568929

ABSTRACT

Serratia marcescens is a Gram-negative bacterium with both environmental and host-associated strains. Pigmentation is reportedly inversely correlated with infection frequency, and prodigiosin is one of Serratia pigments that has medical and industrial applications. Here, we report the draft genome sequence of prodigiosin-hyperproducing Serratia marcescens strain N2, isolated from Cairo, Egypt. The sequence is assembled into 142 contigs, with a combined size of 5,570,793 bp. The assembled genome carries typical S. marcescens genes, with potential prodigiosin-biosynthesizing genes detected.


Subject(s)
Prodigiosin , Serratia marcescens , Egypt , Pigmentation , Serratia marcescens/genetics
7.
Eur J Clin Microbiol Infect Dis ; 40(11): 2349-2361, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34169445

ABSTRACT

Antimicrobial resistance is a major public-health concern. We evaluate chlorhexidine role in selection of resistant Pseudomonas aeruginosa mutants and their antibiotic cross-resistance. Mutation frequency and mutation rate after short-term exposure to sub-inhibitory concentrations of chlorhexidine were compared to those after spontaneous chlorhexidine-exposure, in P. aeruginosa PAO1 strain. Chlorhexidine-resistant mutants were generated, either by serial passage in increasing chlorhexidine concentrations or by single exposure to lethal chlorhexidine concentration. The generated mutants were tested for cross-resistance to different antibiotics, by determination of minimum inhibitory concentrations (MIC). The accompanied phenotypic changes in membrane permeability, outer membrane proteins (OMP), and efflux function were evaluated. The effect of exposure to chlorhexidine on MexAB-OprM, MexEF-oprN, and MexXY efflux pumps expression was investigated. No significant change was recorded between the mutation frequencies and mutation rates after short-term exposure to sub-inhibitory concentrations of chlorhexidine and after spontaneous chlorhexidine-exposure, in P. aeruginosa PAO1 strain. Twelve stable mutants, with ≥ eight-fold increase in chlorhexidine MIC, were generated. Several mutants showed increase in the MIC of colistin, cefepime, ceftazidime, meropenem, ciprofloxacin, and amikacin; seven mutants expressed meropenem cross-resistance. This was accompanied by decreased outer membrane permeability and changes in OMP. Using efflux pump inhibitor, chlorhexidine resistance was reverted in most isolates. Exposure to sub-inhibitory concentration of chlorhexidine induced the expression of MexXY efflux pump. Some resistant mutants had overexpressed MexXY efflux pump. Chlorhexidine can select P. aeruginosa strains with antibiotic cross-resistance. This necessitates implementing special protocols for chlorhexidine use and re-evaluation of its benefit versus risk in personal-care products.


Subject(s)
Drug Resistance, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ceftazidime/pharmacology , Chlorhexidine/pharmacology , Humans , Meropenem/pharmacology , Microbial Sensitivity Tests , Mutation , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology
8.
Infect Drug Resist ; 14: 1557-1571, 2021.
Article in English | MEDLINE | ID: mdl-33907431

ABSTRACT

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) presents a profound hazard to public health. MRSA colonizing skin, mucous membranes, and the anterior nares without clinical symptoms is termed "colonizing MRSA". Upon manifestation of clinical symptoms, it is termed "infectious MRSA". Here, we characterize and differentiate colonizing and infectious MRSA, and analyze the phenotypic-genotypic and antibiotic susceptibility correlations. METHODOLOGY: Clinical MRSA isolates were recovered from intensive care units (ICUs) of two major Egyptian hospitals and their biofilm formation ability was tested. Antibiograms against 16 antibiotics were determined, in addition to the minimum inhibitory concentrations (MICs) of vancomycin and linezolid. The entire collection was typed by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as multi-locus sequence typing (MLST). Representative resistance and virulence genes were detected by PCR amplification. RESULTS: Forty-nine isolates were confirmed as MRSA, of which 30 isolates were infectious and 19 were colonizing. Versatile resistance patterns were observed in both groups of isolates. We report a higher tendency for biofilm-formation and borderline minimum inhibitory concentrations among infectious isolates. A Positive antibiotic correlation was observed between susceptibility to protein synthesis inhibitors and cell wall inhibitors. Positive correlations were observed between isolation site and rifampicin resistance: nasal samples were enriched in rifampicin-resistant isolates, while urine and blood samples were enriched in susceptible ones. Furthermore, biofilm formation ability was slightly associated with amikacin resistance, and an association between teicoplanin resistance and the presence of the Panton-Valentine leukocidin gene was the only significant phenotype-genotype correlation observed. Finally, ERIC typing and MLST had congruent results. CONCLUSION: Linezolid and vancomycin are still the most convenient choice for MRSA treatment. ERIC PCR and MLST show promising typing combination that could be easily used periodically for tracking the genotypic changes of MRSA, especially within the healthcare facilities. Several correlations were established between groups of antibiotics and the genotypes/phenotypes of the selected isolates.

9.
Curr Cancer Drug Targets ; 21(6): 536-543, 2021.
Article in English | MEDLINE | ID: mdl-33653251

ABSTRACT

BACKGROUND: This study aims to investigate the relation between Survivin gene polymorphisms and the risk of Hepatocellular carcinoma (HCC) resulting from hepatitis C infection among the Egyptian population. METHODS: This prospective study was conducted on 164 patients, 57 patients were diagnosed with hepatitis C, where 57 were diagnosed with HCC in addition to 50 healthy volunteers as controls. Genotyping for Survivin rs1042489 and rs8073069 single nucleotide polymorphisms was carried out by the allelic discrimination Real-Time Polymerase Chain Reaction Single Nucleotide Polymorphisms genotyping technology. RESULTS: The results of Survivin rs1042489 polymorphism revealed that the TC and CC genotypes were significantly different between hepatocellular carcinoma patients (OR=15.5, 95%CI: 3.299-72.825,P<0.001), and controls (OR=44, 95%CI: 8.025-241.254, P<0.001). Furthermore, CC genotype was significantly different between cirrhotic and hepatocellular carcinoma patients (OR=19.2, 95%CI: 3.097-119.049, P=0.002). Moreover, the TC genotype shows a significant difference between controls and cirrhotic patients (OR=5.5, 95%CI: 2.111-14.328, P<0.001). However, when comparing TT genotypes, CC+TC genotypes results showed a significant association with increasing the risk of cirrhosis and hepatocellular carcinoma (OR=4.812, 95%CI: 1.893-12.233, P=0.001), (OR=21.607, 95%CI: 4.738-98.532, P<0.01), respectively. On the other hand, there was no significant difference among all studied groups for all genotypes regarding Survivin rs8073069. Also, the CC+GC genotype showed no significant association with increased risk of hepatocellular carcinoma (P=0.999) compared with the GG genotypes. CONCLUSION: The study indicates that functional Survivin rs1042489 polymorphism may contribute to the risk of hepatocellular carcinoma while Survivin rs8073069 polymorphism has no significant association with increased risk of hepatocellular carcinoma among the studied groups.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Case-Control Studies , Egypt , Genetic Predisposition to Disease , Hepacivirus , Humans , Liver Neoplasms/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Survivin/genetics
10.
Microb Ecol ; 82(2): 288-298, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33420624

ABSTRACT

Assessing microbial identity, diversity, and community structure could be a valuable tool for monitoring the impact of xenobiotics and anthropogenic inputs in rivers, especially in urban and industrial settings. Here, we characterize the Nile River microbial community in water and sediments in summer and winter at five locations that span its natural flow through the Cairo metropolis. 16S rRNA gene datasets were analyzed to identify the role played by sample type (sediment versus water), season, and location in shaping the community, as well as to predict functional potential of the Nile River microbiome. Microbial communities were mostly influenced by sampling type (sediments versus water), while seasonal effects were only observed in water samples. Spatial differences did not represent a significant factor in shaping the community in either summer or winter seasons. Proteobacteria was the most abundant phylum in both water and sediment samples, with the order Betaproteobacteriales being the abundant one. Chloroflexi and Bacteroidetes were also prevalent in sediment samples, while Cyanobacteria and Actinobacteria were abundant in water samples. The linear discriminative analysis effect size (LEfSe) identified the cyanobacterial genus Cyanobium PCC-6307 as the main variable between summer and winter water. Sequences representing human and animal potential pathogens, as well as toxin-producing Cyanobacteria, were identified in low abundance within the Nile microbiome. Functionally predicted metabolic pathways predicted the presence of antibiotic biosynthesis, as well as aerobic xenobiotic degradation pathways in the river microbiome.


Subject(s)
Cyanobacteria , Microbiota , Animals , Geologic Sediments , Humans , RNA, Ribosomal, 16S/genetics , Rivers , Spatio-Temporal Analysis , Water
11.
Saudi Pharm J ; 28(10): 1253-1262, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33132719

ABSTRACT

Cell- based targeted delivery is recently gain attention as a promising platform for delivery of anticancer drug in selective and efficient manner. As a new biotechnology platform, bacterial ghosts (BGs) have novel biomedical application as targeted drug delivery system (TDDS). In the current work, Salmonellas' BGs was utilized for the first time as hepatocellular cancer (HCC) in-vitro targeted delivery system. Successful BGs loading and accurate analysis of doxorubicin (DOX) were necessary steps for testing the applicability of DOX loaded BGs in targeting the liver cancer cells. Loading capacity was maximized to reach 27.5 µg/mg (27.5% encapsulation efficiency), by incubation of 10 mg BGs with 1 mg DOX at pH 9 in constant temperature (25 °C) for 10 min. In-vitro release study of DOX loaded BGs showed a sustained release (182 h) obeying Higuchi sustained kinetic release model. The death rate (tested by MTT assay) of HepG2 reached to 64.5% by using of 4 µg/ml, while it was about 51% using the same concentration of the free DOX (P value < 0.0001 One-way ANOVA analysis). The proliferative inhibitory concentration (IC50) of the DOX combined formula was 1.328 µg/ml that was about one third of the IC50 of the free DOX (3.374 µg/ml). Apoptosis analysis (tested by flow-cytometry) showed more accumulation in early apoptosis (8.3%) and late apoptosis/necrosis (91%) by applying 1 µg/ml BGs combined DOX, while 1 µg/ml free DOX showed 33.4% of cells in early apoptosis and 39.3% in late apoptosis/necrosis, (P value˃ 0.05: one-way ANOVA). In conclusion, DOX loaded Salmonellas' BGs are successfully prepared and tested in vivo with promising potential as hepatocellular cancer (HCC) targeted delivery system.

12.
OMICS ; 24(2): 62-80, 2020 02.
Article in English | MEDLINE | ID: mdl-32027574

ABSTRACT

Precision/personalized medicine is a hot topic in health care. Often presented with the motto "the right drug, for the right patient, at the right dose, and the right time," precision medicine is a theory for rational therapeutics as well as practice to individualize health interventions (e.g., drugs, food, vaccines, medical devices, and exercise programs) using biomarkers. Yet, an alien visitor to planet Earth reading the contemporary textbooks on diagnostics might think precision medicine requires only two biomolecules omnipresent in the literature: nucleic acids (e.g., DNA) and proteins, known as the first and second alphabet of biology, respectively. However, the precision/personalized medicine community has tended to underappreciate the third alphabet of life, the "sugar code" (i.e., the information stored in glycans, glycoproteins, and glycolipids). This article brings together experts in precision/personalized medicine science, pharmacoglycomics, emerging technology governance, cultural studies, contemporary art, and responsible innovation to critically comment on the sociomateriality of the three alphabets of life together. First, the current transformation of targeted therapies with personalized glycomedicine and glycan biomarkers is examined. Next, we discuss the reasons as to why unraveling of the sugar code might have lagged behind the DNA and protein codes. While social scientists have historically noted the importance of constructivism (e.g., how people interpret technology and build their values, hopes, and expectations into emerging technologies), life scientists relied on the material properties of technologies in explaining why some innovations emerge rapidly and are more popular than others. The concept of sociomateriality integrates these two explanations by highlighting the inherent entanglement of the social and the material contributions to knowledge and what is presented to us as reality from everyday laboratory life. Hence, we present a hypothesis based on a sociomaterial conceptual lens: because materiality and synthesis of glycans are not directly driven by a template, and thus more complex and open ended than sequencing of a finite length genome, social construction of expectations from unraveling of the sugar code versus the DNA code might have evolved differently, as being future-uncertain versus future-proof, respectively, thus potentially explaining the "sugar lag" in precision/personalized medicine diagnostics over the past decades. We conclude by introducing systems scientists, physicians, and biotechnology industry to the concept, practice, and value of responsible innovation, while glycomedicine and other emerging biomarker technologies (e.g., metagenomics and pharmacomicrobiomics) transition to applications in health care, ecology, pharmaceutical/diagnostic industries, agriculture, food, and bioengineering, among others.


Subject(s)
Biomarkers , Precision Medicine , Sugars/metabolism , Disease Management , Disease Susceptibility , History, 20th Century , History, 21st Century , Humans , Inventions , Polysaccharides/biosynthesis , Precision Medicine/history , Precision Medicine/methods
13.
Article in English | MEDLINE | ID: mdl-31179245

ABSTRACT

The emergence and spread of metallo-beta-lactamase-producing multidrug-resistant (MDR) Klebsiella pneumoniae is a serious public health threat, which is further complicated by the increased prevalence of colistin resistance. The link between antimicrobial resistance acquired by strains of Klebsiella and their unique metabolic capabilities has not been determined. Here, we reconstruct genome-scale metabolic models for 22 K. pneumoniae strains with various resistance profiles to different antibiotics, including two strains exhibiting colistin resistance isolated from Cairo, Egypt. We use the models to predict growth capabilities on 265 different sole carbon, nitrogen, sulfur, and phosphorus sources for all 22 strains. Alternate nitrogen source utilization of glutamate, arginine, histidine, and ethanolamine among others provided discriminatory power for identifying resistance to amikacin, tetracycline, and gentamicin. Thus, genome-scale model based predictions of growth capabilities on alternative substrates may lead to construction of classification trees that are indicative of antibiotic resistance in Klebsiella isolates.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genomics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Egypt , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Phenotype
14.
PDA J Pharm Sci Technol ; 73(6): 562-571, 2019.
Article in English | MEDLINE | ID: mdl-30770487

ABSTRACT

The only definitive management of snake envenoming is the use of snake antivenom. Endotoxin contamination is a serious threat to the safe use of parenteral drugs. A greater understanding of the nature of limulus amebocyte lysate (LAL) test interference and use of permissible dilutions has minimized enhancement problems. Common interference issues include suboptimal pH, enzyme or protein modification, and nonspecific LAL activation. This study aimed at determining the interference factors associated with validating the antivenom sera preparations to avoid false-positive results when testing snake antivenom serum samples by the LAL method. Phase I (preliminary screening/interference assay) was performed to determine a compatible test dilution, which was then used in Phase II (inhibition-enhancement/validation study). The best approach to resolve interference issues was dilution by 1:80 (maximum valid dilution) plus a specific treatment as heat-activation at 70°C-80°C for 10 min with rehydration of LAL reagent with endotoxin-specific buffer solution.LAY ABSTRACT: Snake antivenom sera are produced by immunizing horses with repeated nonlethal doses of snake venom. Bacterial endotoxins constitute one of the major problems in the formulation of pharmaceutical products. One such method for detecting endotoxin levels is the bacterial endotoxin test (BET). However, some substances show strong interfering action with the BET that cannot be avoided by simply diluting the sample solution. In this work, the test for interfering factors was performed as two identical series of product dilutions-one spiked with 2λ and one left unspiked. The result of the interference test revealed the noninterfering dilution (NID) of the product, which was used for the actual validation. Our results showed that after treating the samples using different procedures, such as heat activation at 70-80°C for 10 min followed by centrifugation at 2000 rpm for 10 min and dilution of samples in BD100 (biodispersing agent), inhibition and enhancement up to 1:100 maximum valid dilution (MVD) were observed. Finally, to resolve this inhibition/enhancement problem, the activated sample was heated at 70-80°C for 10 min with rehydration of the Endosafe LAL reagent in an endotoxin-specific buffer solution (BG120) to block ß-d-glucans and limulus amebocyte lysate (LAL) reactive material (LAL-RM).


Subject(s)
Antivenins/analysis , Bacteria/isolation & purification , Endotoxins/analysis , Limulus Test/methods , Animals , Horses , Hot Temperature , Snake Venoms/immunology
15.
Article in English | MEDLINE | ID: mdl-30801061

ABSTRACT

The emergence and spread of metallo-beta-lactamase-producing multidrug-resistant Klebsiella pneumoniae are a serious public health threat. Here, we report the draft genome sequences of four K. pneumoniae strains isolated from Cairo, Egypt, including two panresistant colistin-resistant strains. Genome annotation indicated a number of virulence and resistance genes agreeing with observed phenotypes.

16.
Saudi Pharm J ; 26(2): 232-237, 2018 Feb.
Article in English | MEDLINE | ID: mdl-30166921

ABSTRACT

Bacterial ghosts (BGs) can be prepared by both genetic and chemical means. Genetic method include using lysis gene E. Chemical method include incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations (MIC or MGC). The aim of this study is to prepare the BGs with a new protocol via exposing the bacterial cells to tween 80 for an extended period of time followed by sudden reduction of the surrounding pH. Salmonella enterica serovar typhimurium ATCC 13311 was used for this purpose. The cells were incubated in 7% v/v tween 80 solution in Muller-Hinton broth for 24 h at 37 °C then pH was decreased to 3.6 by adding lactic acid for one hour. The bacterial pellets were separated by high speed centrifugation, and then washed three times by half normal saline solution. High quality BGs were visualized by scanning electron microscopy (SEM) revealing punctured cells with intact outer shells and at least one intramembranous tunnel. The absence of vital cells was confirmed by subculturing. The release of respective amounts of proteins and DNA is another evidence of ghost's production. In addition, the integrity of cells was proved by visualization of Gram-stained cells using light microscopy. In conclusion, this new protocol is simple, economic and feasible for BGs preparation.

17.
OMICS ; 22(8): 553-564, 2018 08.
Article in English | MEDLINE | ID: mdl-30106354

ABSTRACT

World freshwater supplies are in need of microbiome diversity analyses as a first step to future ecological studies, and to monitor water safety and quality. The Nile is a major north-flowing river in Africa that displays both spatial and temporal variations in its water quality. Here, we present the first microbiome analysis of the Nile River water in two seasons: (1) summer representing the wet season, and (2) winter representing the dry season, as sampled around Cairo, the capital of Egypt. Surface river water samples were collected from selected locations along the path of river, and the microbial composition was analyzed by next-generation sequencing of the 16S rRNA gene. We found a striking stability in the Nile microbiome community structure along the examined geographical urban sites and between the wet and dry seasons as evidenced by the high proportion of shared operational taxonomic unit values among all samples. The community was dominated by the Cyanobacteria (mainly Synechococcus), Actinobacteria candidate family (ACK-M1), and Proteobacteria (mainly family Comamonadaceae). Among these dominant taxa, Synechococcus exhibited seasonal driven variation in relative abundance. Other taxa were predominantly rare across all seasons and locations, including genera members of which have been implicated as pathogens such as Acinetobacter, Aeromonas, and Legionella. In addition, comparisons with data on freshwater microbiome in other world regions suggest that surface water communities in large rivers exhibit limited variation. Our results offer the first insights on microbial composition in one of the most notable rivers near a large metropolis.


Subject(s)
Rivers , Seasons , Actinobacteria/genetics , Actinobacteria/isolation & purification , Aeromonas/genetics , Aeromonas/isolation & purification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Egypt , Legionella/genetics , Legionella/isolation & purification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
18.
Sci Rep ; 7(1): 5733, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720810

ABSTRACT

Enterococci are nosocomial pathogens that can form biofilms, which contribute to their virulence and antibiotic resistance. Although many genes involved in biofilm formation have been defined, their distribution among enterococci has not been comprehensively studied on a genome scale, and their diagnostic ability to predict biofilm phenotypes is not fully established. Here, we assessed the biofilm-forming ability of 90 enterococcal clinical isolates. Major patterns of virulence gene distribution in enterococcal genomes were identified, and the differentiating virulence genes were screened by polymerase chain reaction (PCR) in 31 of the clinical isolates. We found that detection of gelE in Enterococcus faecalis is not sufficient to predict gelatinase activity unless fsrAB, or fsrB alone, is PCR-positive (P = 0.0026 and 0.0012, respectively). We also found that agg is significantly enriched in isolates with medium and strong biofilm formation ability (P = 0.0026). Additionally, vancomycin, applied at sub minimal inhibitory concentrations, inhibited biofilm in four out of five strong biofilm-forming isolates. In conclusion, we suggest using agg and fsrB genes, together with the previously established gelE, for better prediction of biofilm strength and gelatinase activity, respectively. Future studies should explore the mechanism of biofilm inhibition by vancomycin and its possible use for antivirulence therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Enterococcus/drug effects , Enterococcus/physiology , Genetic Association Studies , Vancomycin/pharmacology , Egypt , Enterococcus/genetics , Enterococcus/isolation & purification , Genes, Bacterial , Genotype , Gram-Positive Bacterial Infections/microbiology , Hospitals , Humans , Polymerase Chain Reaction , Virulence Factors/genetics
19.
Biotechnol Rep (Amst) ; 14: 47-53, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28491819

ABSTRACT

Prodigiosin is a red pigment produced by Serratia marcescens. Prodigiosin is regarded as a promising drug owing to its reported characteristics of possessing anti-microbial, anti-cancer, and immunosuppressive activity. A factorial design was applied to generate a set of 32 experimental combinations to study the optimal conditions for pigment production using crude glycerol obtained from local biodiesel facility as carbon source for the growth of Serratia marcescens. The maximum production (870 unit/cell) was achieved at 22 °C, at pH 9 with the addition of 1% (w/v) peptone and 109 cell/ml inoculum size after 6 days of incubation. Gamma radiation at dose 200 Gy was capable of doubling the production of the pigment using the optimized conditions and manipulating production temperature. Our results indicate that we have designed an economic medium supporting enhanced Serratia marcescens MN5 prodigiosin production giving an added value for crude glycerol obtained from biodiesel industry.

20.
PeerJ ; 4: e2737, 2016.
Article in English | MEDLINE | ID: mdl-27917323

ABSTRACT

Streptococcus pneumoniae is a pathogen that causes serious invasive infections, such as septicemia, meningitis and pneumonia in addition to mild upper respiratory tract infections. Protection from pneumococcal diseases is thought to be mediated mainly by serotype-specific antibodies to capsular antigens. Pneumococcal conjugate vaccine consists of sugars (polysaccharides) from the capsule of the bacterium S. pneumoniae that are conjugated to a carrier protein. Three pneumococcal conjugated vaccines, each directed against a group of serotypes, are registered in Egypt; however, local vaccine production is required to cover the most prevalent serotypes. In this work, capsular polysaccharide from the most current and prevalent serotypes in Egypt were extracted, purified and conjugated to bovine serum albumin (BSA). The polysaccharide protein conjugate was purified through ultrafiltration technique and molecular size distribution was compared to an available vaccine. The immunogenicity of the prepared vaccine was examined via two methods: First, by measuring the levels of the elicited antibodies in the sera of the vaccinated mice; second, by challenging the vaccinated groups of mice with approximately 107 CFU of each specific serotype and determining the degree of protection the developled vaccine offers. Our results show that the developed conjugated capsular polysaccharide vaccine is highly immunogenic and protective in mice. This finding illustrates the importance of tracking the most recent and predominant peneumococcal serotypes to generate effective vaccines, instead of using expensive imported vaccines with large number of serotypes which might not be even present in the community.

SELECTION OF CITATIONS
SEARCH DETAIL
...